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INTRODUCTION

The objective of this study is to develop a two- and three-

dimensional comprehensive spray combustion computer simulation

code to study the complex physical processes involved in a

liquid-fueled combustor. Efforts of this study in the last six

months include: _I) implementing the Stochastic/two-equation

model for turbulent droplet dispersion calculation; (2) testing

the transient particle tracking methodology in a benchmark flow

field; (3) upgrading and test the two-equation k-E model for the

ARICC code. In the following, progresses in these studies will

be briefly described.

(i) Implementations of the Stochastic Lagrangian particle

tracking model into the MAST code have been completed. We

utilized the operator-splitting technique such that the two-way

coupling between the two phases is accounted for in a multi-

corrector procedure. This operator-splitting technique eliminate

the global iteration processes used in the conventional

SIMPL/PSIC (particle source in cell) method. This method is time-

accurate, and has been shown to very efficient for transient

spray calculations.

(2) Testing of the above mentioned two-phase methodology

for single injector spray has been carried out. The testing

conditions for the Horiyasu's experiment setups are shown in

Table i. At the injection exit, the distribution of droplet

sizes is modeled by a X-square function. Particle/droplet

interaction was modeled by random sampling from assumed

probability distribution of flow turbulence. For the k-E model

1



used, this probability distribution is Gaussian. Figure 1 and 2

show the penetration of spray at different chamber pressures.

Comparisons of the computed spray penetrations with experimental

data are shown in Figure 3. The agreement is excellent and shows

the time-accuracy capability of the current methodolgy. The

efficiency assessment of the MAST calculations is summarized in

Table 3. It can be seen that the MAST reduces CPU time by one

order-of-magnitude and very much particle-number insensitive.

The robustness of this methodology is demonstrated for this test

case. Further testings are underway for hollow-cone sprays.

(3) Turbulence model upgrade for ARICC and the testing of

the ARICC performance on benchmark turbulent flows have been

completed. Due to the explicit ALE-ICE method used in the ARICC

code, the inclusion of the k-E model highly reduced the time-step

for marching solutions. The efficiency of the ARICC code with

advanced turbulence models was seen to deteriorate significantly.

Detailed implementation and validation studies can be found in

Lee's Master Thesis which is funded by this grant and is enclosed

as an appendix.
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TABLE 1

SINGLE-ORIFICE INJECTION PARAMETERS(Horiyasu)

Chamber Injection

Gas Pressure Velocity

(ATM) (re�see)

Gas Mass

Density Flow

(kgl,_ _) (kglsec)

Sauter Mean Eddy

Radius(SMR) Viscosity

/

1 122.2 1.123 0.00726

30 102.5 33.70 0.00609

5.0 7.1 × 10 -4

5.0 5.0 X 10 -4

Fuel: Diesel fuel oil, ps = 840 kg/rn 3

Ambient Gas: Nitrogen

Nozzle Diameter: 0.3 mm



TABLE 3

EFFICIENCY ASSESSMENT (CPU Time)

SINGLE-ORIFICE SPAR

41 x 61 Grid

300 Time Steps

MAST-2D

Particle

600

1200

126.9 sec

135.7 sec

TEACH/PSIC

Particle #

8OO 1420 sec

HOLLOW CONE SPRAY

31 x 31 Grids

200 Time Steps

400

1000

74.9 sec

88.3 sec

800 934 sec
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ABSTRACT

The purpose of this study is to validate and further develop an existing Compu-

tational Fluid Dynamics code for simulating complex turbulent flows inside a liquid

rocket combustior_ chamber. The ARICC (Advanced Rocket Injector/Combustor

Code) Code is simplified and validated against benchmark flow situations for lami-

nar and turbulent flows. The numerical method used in ARICC Code is re-examined

for incompressibl( _flow calculations. For turbulent flows, both the subgrid and the

two equation k- _ turbulence models are studied. Cases tested include idealized

Burger's equation in complex geometries and boundaries, a laminar pipe flow, a high

Reynolds number turbulent flow, and a confined coaxial jet with recirculations. The

accuracy of the aigorithm is examined by comparing the numerical results with the

analytical solutions as well as experimented data with different grid sizes.
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CHAPTER I INTRODUCTION

Combustion flows involving liquid propellants inside a liquid rocket engine rep-

resent one the most complicated engineering flow systems in operation. The com-

plexity stems fron_ the existence of multiple zones with very different time and

length scales within the same physical domain (Figure 1.1). The zones are in close

proximity to each other and the processes are usually strongly coupled. In the

injection zone, for instance, the major physical characteristics include those of mul-

tiphase flows, recirculation, high shear stresses, and steep pressure gradient. The

multiphase flows nvolved are : a multispecies gaseous phase, incompressible liq-

uid phase, and a _)articulate droplet phase. The dominant processes are liquid jet

breakup and ator_lization, droplet-gas interactions and fluid-wall interactions. A

short distance aw;_y from the injector, the characteristics of the flow become those

of steep concentr_tion gradients around droplets, turbulent mixing and diffusion,

and dilute gas-liqllid suspension flow. The critical processes become those of droplet

transport, evaporation, and droplet heatup. Further downstream, the fuel/oxidizer

mixture begins to combust. The flow is now characterized by high heat fluxes, a rel-

atively large number of gaseous species, and temperature extremes that necessitate

the consideration of real gas properties. The key processes are kinetic and equilib-

rium chemical reactions and species diffusion. Finally, in the post-combustion or
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expansionzone,th,_"fluid properties rangefrom a "frozen" composition to near "dy-

namic equilibrium". There is high velocity gradient near walls and at the nozzle.

The dominant prccessesof interest are transonic/supersonic flows and boundary

layer effects.

As shownin Figure 1.1, all zonesare coupledwith eachother. The first three

zonesin a typical rocket engine preburner, for example, the SpaceShuttle Main

Engine (SSME), c,)mprisea volume of only about 1-inch diameter by 2-inch length.

While different dc)minantprocessescan be identified in different zones, they are

intrinsically coupled to eachother.

In 1985, a comprehensivemodel for the simulation of detailed three-phase

combustion flows inside combustionchamber was developedby Rocketdyne. The

Rocketdyne Code (ARICC) is developedfrom CONCHAS-SPRAY of LANL (Los

Alamos National Laboratory). The original CONCHAS-SPRAY code solves the

equationsof tran,:ient multicomponent chemically reactive fluid dynamics, together

with those for the dynamics of an evaporating liquid spray. With few exception.

reactive flow pro)lems of practical interest are far too complex to be solved ana-

lytically. Quanti_;ativetheoretical analysestherefore require the use of numerical

methods. CONCHAS-SPRAY is a time-marching codethat solvesfinite difference

approximations to the governing differential equations. The transient solution is

marched out in a sequenceof finite time increments called cyclesor time steps.

Values of the deT_endentvariables on each cycle are calculated from those on the

previous cycle. CONCHAS-SPRAY is a two-dimensional code, which assumes

that the depend.mrvariables depend on only two of the three spatial coordinates
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becauseof symmet:'y. The effects of turbulence are represented by a simple subgrid

scale (SGS) turbulence model, whose use is optional. The option is also provided

to calculate boundary layer drag and heat transfer from a modified turbulent law

of the wall. CONCHAS-SPRAY utilizes a partially implicit numerical scheme that

is a variant of the ICE method (Harlow and Amsden, 1968, 1971). Spatial differ-

ences are formed with respect to a generalized finite-difference mesh or grid, which

subdivide the regicm of interest into a number of small quadrilateral cells, or zones.

The corners of the cells are called the vertices. The position of the vertices may be

arbitrarily specified as function of time, thereby allowing a Lagrangian. Eulerian,

or mixed description. Since the locations of the vertices are arbitrary, the cells are

arbitrary quadrila_,erals. This type of mesh is called an ALE (arbitrary Lagrangiaa-

Eulerian) mesh (t[irt, Amsden and Cook, 1974; Pracht 1975), and is particularly

useful for representing curved and/or moving boundary surfaces. Evaporating liquid

sprays are represented by a discrete- particle technique (Dukowicz 1980), in which

each computational particle represents a number of similar physical particles.

Simulation of gas phase and particle phase was completed in CONCHAS-

SPRAY. In ARICC code, the volume of fluid method was added to account for

dense spray (Figure 1.2). While the liquid phase is assumed to be incompressible

with a constant density and temperature. The "pseudo-incompressible" treatment

was used in ARICC, the inclusion of limited compressibility made the liquid iter-

ation process much more stable and allowed much faster convergence (Liang et al.

1985).

The ARICC code is designed to simulate two-phase multi-species reacting flow



with spray droplets in either a two-dimensional or an axisymmetric with swirl con-

figuration. The code is real-time accurate. It accounts for all the important physical

processes involved in commonly encountered combustion devices either vigorously

or using empirical models. Radiation, which is not significant in the case of liquid

rocket combustion chambers, is not modeled (ARICC User's Manual).

The Deardor_"s subgrid model is an algebraic model in which the "mixing

length" is prescribed by the local grid size. In the last two decades, the advances

of turbulence mod'_,ling has reach the point where reasonable good predictions of at

least the mean vel _city fields can be made by some advanced models. The purpose

of this study is incorporate the so-called two equation kinetic energy (k)- energy

dissipation rate (_) turbulence model into the ARICC code for better presentation

of turbulence field[ simulation. The k - e model accounts for the history effect,

as well as diffusion, sources of the characteristic velocity and length thus is more

capable of handling complex flows such as the ones encountered in typical liquid

engines. In the fcllowing chapters, numerical aspects of ALE-ICE schemes will be

described. Severai benchmark testing cases for laminar as well as turbulent flows will

be performed to -_alidate the implementations and performances of the turbulence

models and the ALE-ICE scheme. Finally, conclusion and recommendations will be

made.
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V O F (Volume of Fluid)

• ACTIVE CELLS DISTINGUISHED BY THEIR FLAG VALUES:
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DEF F =
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• SINGLE-VALUED THERMODYNAMIC PROPERTIES FOR ALL CELLS

• PRESSURE IN FULLY LIQUID CELLS DETERMINED BY PRESSURE
ITERATION SCHEME FOR IMCOMPRESSIBLE FLUID

Figure 1. 2 Volume of Fluid Algorithm c_



CHAPTER II MATHEMATICAL MODELS

A. Governing Equations

The governing equations in axisymmetric fluid flows are shown in cylindrical

coordinate with x-¢-0 coordinates and u-v-w velocities. The x direction is the axial

coordinates and t[_e y direction is the radial coordinates.

For conservation of mass, the governing equation is

Op I 0N + _[_(pyu) + (pyv)]= 0
(2.1.a)

For conservation of linear momentum of Newtonian fluid, the governing equa-

tions are given by

1_( Oypuu Oypuv, Op°(pu) + _ + )y Ox Oy Ox

C9, v) l___(Oypuv Oypvv Op
y Oz Oy Oy

_ ro__oo+ pw___.2_2

Y g

l[ ff___(yr_) + ff-_(yr_y)] (2.2.a)

1 0

(2.2.b)

The angular momentum equation, which determines the swirl velocity w, is

given by

N(uow)+ _[ (u_pw_)+ (u_omv)]= [ (u_-_0)+ N(u_0)]
(2.3)

For conservation of internal energy, the equation is given by

Ot (pI) + y[ (ypIu) + (yplv)] = -P-[_xx (yu) + (yv)]+Y
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0 tt 0 U

+ "2_-eo(,J) + n,_(_) + 2._[T:,e&j( ,J a:r _j

_v__i !,,i_ ) _> :4_!: !/,1,_ ;! (2.4)
y O£ w, p

where

Ou _(v. u)]

too = #[2L*- 2(V" u)]
!! 3

Ov 2

r,,,, = ,{2 a:; g(V- u)]

_-,e= '-o_= #[u (-)]
: !J

(9 tL'r

= ,-,,o= #I.v=(-)1
Y

Ou Ov ,

and

-7 • U --

Ou, 1 0 c__gu t' Ou

- 0.-7+ -v_ (v_') = -57.+ -u+ --Or

for the energy eq lation, the heat flux is

where p is the density, p is the pressure, tt is the velocity in axial direction, t, is

the velocity in r_ dial direction, T is the temperature, I is the internal energy of the

fluid flow, # is t lie viscosity of the fluid and K is the thermal conductivity.

For hot gas,_s, equation of state is described by the ideal gas law

p = pRT (2.5)
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where R is the un:versal constant.

The preced;.p__ eouations have }_eela _i,_'on in forms appropriate for laminar flows.

In order to treat tt rbulent flows, the equations must be suitably averaged. Ensemble

averages are used here. Whatever type of averaging process selected, instantaneous

dependent variab,es are separated into mean and fluctuating components. The

averaged equatior s are considerably simpler if the mean values are mass weighted

(the so-called Favre averaging procedure for compressible turbulent flows.

In order to s!_ow the turbulent monons and their interactions with the mean

motion more explicitly, we follow a procedure due to Osborne Reynolds. Let us

apply this procedure to the flow of a incompressible fluid with constant viscosity.

constant density, isothermal flow. In this approach the instantaneous quantities are

decomposed into mean and fluctuating parts, i.e.,

,,, = Ui + t*'i

t

p=P+p

After insertion it to equations (2.1) and (2.2) the following time averaged equations

result

Olr' U OUi OP 0 _ L(OU' OUj (2.6)

For an incompressible fluid and constant viscosity, we come to the conclusion that

! !

the turbulence t_.rms pUiU j can be interpreted as stresses on an element of the fluid

in addition to tl_e stresses determined by the pressure P and the viscous stresses.

Because Reynol(is was the first to give the equation for turbulent flow, the turbulent

t t

stresses pttiU J me often called Reynolds stresses.
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In comparing the turbulence stressesin the equations of motion with the cor-

respondin_ stress(s causedbv viscosity effects it. is temptin_ to ,_sume that the

turbulence stresses act like the viscous stresses, that is, tnat they are directly pro-

portional to the v, qocity gradient. Thus

, ou, ouj) (2.7)
ptti t j = --tit( _ 4- OXi

This assumption x.-as made by Boussinesq, who introduced the concept, of an "appar-

ent," or "turbule_me," or "eddy" viscosity #t. According to Boussinesq's concept,

the eddy viscosit? tit has a scalar value.

In this apprcximation the averaged flow equations become identical in form to

the laminar ones; the transport coefficients (i.e., viscosity and thermal conductivity)

are simply repla(ed by the appropriate turbulent transport coefficients which are

much larger than the laminar values because of the additional transport caused by

the turbulent flu( tuations. Therefore, we use the equations summarized above even

when the flow is turbulent, but with turbulent contributions added to the laminar

values of the tralsport coefficients.

taken to be

The transport coefficients in ARICC are thus

t _ = YL + lit (2.8)

K = licv/P_ (2.9)

In this study, the dependence of #L on temperature is modeled by a curve fit, liL

is laminar visco:dty, P_ is the Prandtl number based on cv, c_ is specific heat at

constant volume, #t is a turbulent viscosity.
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The eddy visc_)sity#t thus definedbecomesa property of the flow encountered

a_d tool,ires mode[in_. The hierarchy of turbulence rnodel;,_ .hasBeen reviewed

extensively in the hterature (seeDeardorff (1971)and Jonesand Lauder (1972)). In

this study, the original zeroequation subgrid turbulence model originally usedin the

CONCHAS-SPRAY and ARICC code will be validated against incompressible flows.

In addition, a two- equation turbulence model (k - e model) will be incorporated

into the ARICC c=)de. Brief descriptions of these two models are given below.

B. The Subgrid Turbulence Model

The subgrid model was suggested by Deardorff (1971). The local Reynolds

stresses which arise from the averaging process were simulated by an eddy coefficient

with magnitude hmited in some way by the size of the averaging domain. When

this domain is coI_sidered to be the grid volume of a detailed numerical integration,

the eddy coefficient #t becomes a "subgrid scab" of "SGS" eddy coefficient. The

formulation, whi(h allows/zt to be variable in space and time, is formulated as:

2 " 1

1 pK2DA2(D_I + D_ 2 + D]3 + 2D_2 + 2D_3 + 2D23) _ (2.10)

where

Dll - 9(9u
-- _OX

Ou Ov

D_o - Oy + -_x'

U

D22 = 20v D3a = 2-
Y

0 w)
(9 w), D23=Y_y(__ (2.11)DI3 = Y_x ( Y

where A is a rep_ esentative grid interval and was taken to be the largest side length

of the regular ceil, Dij is the magnitude of the local velocity deformation calculated

on the finite-difference grid, and KD is the dimensionless constant. Lilly (1967) has
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estimated KD wi:h approximate knowledge of the Kolmogorov inertial-subrange

C,oPstaDt a, l:-_e a_sumed that _sot_opie turbulence with such an it_ertlal suhrango

was present in the problem being simulated numerically on scales both much greater

and much less then the grid interval A. He also assumed Ax = Ay = Az = A, and

took the Reynold_ averaging vohune to be Aa. He found that

--, a (2 12)Kr) = 0.233- 4

The essential tect- niques recommended by Williams (1969) were used independently

by Deardorff (1970) in a steady of turbulent channel flow at large Reynolds number.

_'(D WaS suggesteTt to be equal to 0.17.

C. The k-e Turbulence Model

The field of turbulence modeling for single-phase flows is a rapidly expanding

one and many p:oposals have been suggested. Tile chosen two-equation model is

used to generate a t urbldence length and velocity scale and these will be used to

form a (non-constant) eddy viscosity. An appropriate velocity scale is u' =/,'½. The

k - e model adopted here is the one developed by .Jones and Launder (1972). In

their paper, the ,_quations was given by

Cpk 1 0 ___+ 7a[& + (yp k)] = l_{ jo(0x

Ope

Ot
--+

0 # Ok

0 # Oe (cl_eG- c2_p_ 2)

(2.13)

(2.14)
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where

c%l. _ ,%, _, .._ ¢q,_ 91, _ _ ,, ._ . c) ,' ,_

O = IL{2[( _---_i + i Og i_ 4-, _i ÷ i ,_. + ,_,, i" _- I!_,y/ _J" + L!_,-_,..'.,, _J )

/_t is then exp_:essed in terms of the turbulent kinetic energy k and the turbulent

energy dissipation rate e via the relation

iz t = c_pk2 /e (2.15)

Philosophica]ly, the strongest motivation for turning to more complex models

is the observation that the algebraic model evaluates the turbulent viscosity only in

terms of local flow parameters, yet a turbulence model ought to provide a mechanism

by which upstream effects can influence the turbulence structure (and viscosity)

downstream. Further, with the simplest models, ad hoc additions and corrections

are frequently re(_uired to handle specific effects, and constants need to be changed

to handle differeiLt classes of shear flows. To many investigators, it is appealing to

develop a model :_eneral enough that specific modifications to the constants are not

require to treat different classes of flows.

Note that the equations (2.13 "-, 2.15) used above are valid only for high

Reynolds number turbulent flows. In order to simulate low Reynolds ntunber tur-

bulent or transit Lon flows including the near wall flows, the high Reynolds number

k - e model must be modified to incorporate viscous and low Reynolds number

effect. In this tlmsis, only high Reynolds number k - e model is considered. For

this reason, the ',vall boundary conditions have to be constructed to avoid sublayer

viscous effects and the wall function approach (to be described in Chapter 4) is

adopted in this study.
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In the equatic,n(2.13) "-_ (2.15) the quantities ak, a(, c1(, c2(, c, and CD are

mo_lel constants. Following Jones and Launder (1972_ the va!'_e_ 11¢ed are list;p.g ip

Table 2.1.

Table 2.1 Constant values for k - e model

O"k 0",_ C1¢ C2¢ Cla CD

1.00 1.30 1.44 1.92 0.09 1.00

Numerous other two-equation models have been suggested, Rubesin (1977)

shows several comparisons between these models for incompressible flow. and overall

they perform quile well. it is difficult to identify the best from the comparisons he

has shown.

The k - e turmlence model has enjoyed wide use because of its ability to predict

the mean velocity field and spreading rate of many turbulent shear flows. A recent

review of the applications of this model to a wide range of problems is given in Rodi

(1982). Application of the k - _ model to heat and mass transfer problems is given

in Shih (1982).

Despite the enthusiasm which is noted from time to time over two-equation

models, it is perltaps appropriate to point out again the two major restrictions on

this type of mo([el. First, two-equation models of the type Boussinesq approxi-

mation holds, h_ algebraic models, #t is a local function whereas in two-equation

models #t is a m(,re general and complex function governed by two additional PDE's.
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If the Boussinesqapproximation fails, then two-equation models would fail. Obvi-

ou._]y,in many flow the Bo, ssinesqaDproximation models reality closolv onot:gh

for engineering purposes.

The second sllortcoming of two-equation models is the need to make assump-

tions in evaluatin_ the various terms in the model transport equations, especially in

evaluating the thi:d-order turbulent correlations. This same shortcoming, however,

plagues all higher-order closure attempts. These model equations contain no magic,

they only reflect he best understanding and intuition of the originators. We can

be optimistic, however, that the models can be improved by improved modeling of

these terms.



CHAPTER III NUMERICAL METHODS -

THE ALE-ICE SCHEME

The numerical method used in the ARICC code is the ALE-ICE (Arbitrary

Lagrangian-Eulerian Mesh, Implicit Continuous-fluid Eulerian Technique) scheme

which utilizes the fractional time step concept and solves the governing flow equa-

tions in unsteadi forms. The temporal domain was discretized into time steps

At = t n+l -- t n ( t=0,1,2 .... ).

From t" to 7 "+l was called a cycle. There are two phases to be performed in

one cycle. From t" to the first intermediate step was called phase A. From phase

A to next intermediate step was called phase B. Then from phase B. we go to next

step phase C which is equivalent to t ''+1 step. Phase A is an explicit Lagrangian

calculation, pha_,e B is an implicit pressure correction and phase C or n+l step is

a rezone calculation.

This separation of a calculational cycle into a Lagrangian phase and a con-

vective flux. or :ezone, phase originated in the Pm'ticle-in-Cell numerical method

(Harlow 1955, A nsden 1966), and has since been used in many hydrodynamic com-

puter codes, h the present technique the different phases can be combined in

various ways to mit the requirements of individual problems. For example, in high

speed problems, in which the Courant stability condition is not likely to be violated,

16
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an explicit calcul;ttion is acceptableand the phasetwo iteration may be omitted,

and for an explicit Lae:ranp;iap_calculatio_ _nly pha_.,':one ;_ used.

The schemeltsesarbitrary Lagrangian-Eulerian Mesh. This type mesh is made

up of arbitrary ,tuadrilateral. The equation was discretized by control volume

or integral-balance approach, which preserves the local conservative properties of

the differential e(luations. Spatial calculation domain is divided into a number of

nonoverlapping c.mtrol vohunes such that there is one control vohlme surrounding

each grid point. The differential equation is integrated over each control volume.

The grid vert.ice,' niay move in an arbitrarily prescribed inanner. This capability

includes the Lag1 angian and Eulerian description as special cases.

A regular c(ll is shown in Figure 3.1. The index of the regular cell (i j) were

regarded as hori::ontal and vertical coordinate. The indices (ij) also label the ver-

tices, with the mtderstanding that vertex (ij) is the (logical) lower left corner of cell

(ij). The "'center'" (.C(,:j, _Ji_ ) of the cell is defined by

c 1
,r,j= _(xl+x_+xa+x4)

= Yl+Y2+Y3+Y4) (3.1)

hi general, the l:oint (xCij, Yi_j) is not the center of mass or volume of cell (ij).

The area o:' the cell in Figure 3.1 following CONCHAS-SPRAY (1982) and

I(IVA-II (1989) is calculated by the algebraic formula.

area = trimigle 123 + triangle 134

1
4TR = =(_/l(X2 - x3) -_- y2(x3 - Xl) -t-_]3(Xl - x2))

2"-
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1
X3 -- X4) -[- _/3(X4 -- Xl) -_- _/4( xl -- X3))

A,,- ATR + ABL (3.2)

The volumes (orresponding to triangles 123 and 134 may be shown to be

1

gdxdy = 5(_/1 -_-Y2 + ga)ATR

1

gdxdy = _(yl -t- y3 -t- y4)ABL
(3.3)

The total cell volume is then given by

f gdxd_/= VTR + VBL (3.4)I"_j
J. tij

Momentum c-_ll (ij) is centered about vertex (ij), as shown in Figure 3.2. A

momentum cell h_s four of its corners at the centers of the four associated regular

cells, the other fol:r at the midpoints of the regular cell sides which meet at vertex

(i j). Momentum ;eli's area and volume are .A_ and 1)i')_. Those calculations are

similar to the regldar cell's calculation (equation 3.1 _ 3.4).

If the finite-,lifferenee representation for the equations has the conservative

property, we must establish that the diseretized version of the divergence theorem

is satisfied. The differential equation is integrated over the area of a typical cell or

momentum cell aid use divergence theorem to transfer area integral to face integral.

//4V'FdA=f, F'nd_

We normally ehe,'k this for a control volume consisting of the entire problem do-

main. To do thi_'_ the integral on the left is evaluated by summing the difference
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representation of ttte equation at all grid points. If the difference schemehas the

conservativeproperty, all terms will cancelexcept those which represent fluxes at

the boundaries. It should be possible to rearrange the remaining terms to obtain

identically a finite- tifference representationof the integral on the right. The result

will be a verificati,m that the massflux into the control volume equals the mass

flux out. When th_ governingequation can be written in divergenceform, we can

be guided in this _rocessby employing the Gaussdivergencetheorem to obtain

the correct matheiaatical formulation for the physical law for a control volume. In

practice, the control volumemethod has a history of leading quickly to expressions

that prove to be nlore accurate than other possibilities near boundaries, probably

becausethe meth_d keeps the discrete nature of the solution method in view at

all times. The distinctive characteristic of the control volume approach is that a

"balance" of somephysical quantity is madeon the region in the neighborhoodof a

grid point. The discretenature of the problem domain is alwavs taken into account

in the control volume approachwhich ensuresthat the physical law is satisfied over

a finite region rat:ler than only at a point as the mesh is shrunk to zero. It would

appear that differenceequationsdevelopedby the control volume approach would

almost certainly rave the conservativeproperty.

Spatial differ,_ncesareperformedby integrating the differential term in question

over the area of a typical cell (or momentum cell). If the term is of gradient

or divergenceform, its area integral is usually converted into a surface integral

using the divergeacetheorem. The area integral of a time derivative is related to

the derivative of the integral by means of the Reynolds transport theorem. The
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area and surface int_,grals are performed under the assumption that the dependent

variables with contr(,1 volume approach are assumed uniform in each cell and/or on

each face. Velocitie', are set at vertex and are regarded as uniform in momentum

cell. All quantities _re regarded as uniform with the value at the center of the cell

face. Then, the line integrals over cell face are approximated by sums over the cell

faces as shown in Figure 3.2.

f F. nds _ EF_ • n_As_ (3.5)
o

where F_ is the valt:e of F at the center of cell face a, no is the outward unit normal

to the cell face,/_s, is its length, and the faces are numbered in a counterclockwise

order.

n_As_ = 1o x k = l_i- l_j (3.6)

where 1_ is the ve:tor of length As_ along cell face a in the counterclockwise

direction, k is the unit vector out of the plane, l_z, loy are the x, y components of

1_ (Figure 3.3).

The velocities are located at vertex, then

uij = u(xo, yij)

,,j = v(xo, (3.7)

where u,v are the x, y components of fluid velocities. Thermodynamics variables

and other scalar variables such as turbulence kinetic energy and energy dissipation

rate are located at cell centers.

X C CQij = Q(o,Yo) (3.8)
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where Q = p, p, T, [, k, E.

A. Phase A : The Explicit Lagrangian Calculation

The explicit Lagrangian calculation was used in phase A. In this step velocities

are advanced explicitly in time using pressure gradients and body forces computed

from the currentl) available pressure and mesh coordinates. If viscous, elastic or

other stresses are desired, they may be included at this stage as well. The total

energy of each cell is also advanced in time to account for the work done by the

body forces and other stresses, except those of pressure. Pressure work terms are

included only afte:" the implicit pressure calculation in phase B. This delay permits

time-advmaced pressures to be used in computing the work and ensures consistency

with the velocities coming out of phase B. The vertices were assumed to move

locally with the w,locities. From this assumption, the convection terms of transport

equations vanished. From continuity equation, we have

/,

a n = [ gpdA n n.¥Iij = _¥Iij = PijVij
Ja ij

(3.9)

From the Lagrangian assumption, the vertex position can be calculated by

pi4. A rA= M,j/_j

n n (3.1o)Yi = gij + vii /kt

r A
and the volume I ij can be calculated by the equations (3.1) "-_ (3.4) with all x_'s

and yn's replacec by xA's and ya's. The pA, pA were calculated by

(3.11)
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The momentum equation was discretized by integrating over the momentum

cell area A_. In momentum cell A_, the velocity is regarded as uniform, but the

density was calcula*ed by the associated four regular cell's density.

Therefore,

A ypuijdA = uij /.a ypd.A : MijUij

ypvijd,A = vij f ypd,A : ,Mijvij
AT A,

(3.13)

where .Mij is the _nass of momentum cell (ij). The momentum equation in phase

A was discretized })y

2

At " = --Yij Pc, I_ + (yT"vyAx + yrvzAy- roo.Am)_ + JMij yA
ot=l o_-_1

4 8

A A ;_a_jv_ _ E _ E _ (3.14)MijVij = --Yij p,_ 12y + (yr_=yAx + yr_=/Xy),_

where the p_ is the pressure of the regular cell in which face a lies. the summation

are over the four taces which are orthogonal to the pressure directions. Ax and/_y

are the distance of the cell center to the cell face in x direction or y direction.

The diffusion terms summation are over the eight faces of momentum cell (ij),

it has been show:l in Figure 3.2. For evaluating viscous stresses, the regular cell

was partitioned into four quadrants by the momentum cell faces which meet at the

cell center 0 (Fig'_lre 3.4). These faces are labeled R, T, B, L. Each vertices has two

faces from one regular cell, and eight faces from four associated regular cells. Faces

B, R are two of ,he eight faces of momentum cell centered at vertex 1, faces R, T
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are two of the eight faces of the momentum cell centered at vertex 2 and so on. The

velocities at point (i are defined as the average velocities of the four vertices values.

1

It0 = _(Ul + U2 + U3 +'_t4)

1

'V0 = _(Vl + V2 -4- V 3 + V4)
(3.15)

The viscous stresses on faces R, T, L, B were described below. First, the partial

derivatives of u, v with respect to x, y in faces R which shown in Figure 3.4 were

calculated by the triangle rule.

_]20 tLlO -- YlO U20

Xlo Y2o- x2o ylo

Ov Xlo V2o- X2o Vlo (3.16)
= zlo y2o- x2o VlO

where

?.tab : tt a -- ttb_ Yab _- U a -- 73b

Xab = Xa -- Xb, Yab = Ya -- _]b

a,b = O, 1,2,3,4

and the others faces T, L, B are obtained by the permutations ( R, 1, 2 ) _ ( T, 3,

4 ) _ ( B, 4, 1 ). The diffusion term is evaluated as the sum of four contributions,

one from each of the regular cell shown in Figure 3.4 contributes to each of the

vertices 1, 2, 3, 4

B. Phase B : Pressure Correction

In phase B, l he vertex positions are determined by the equations
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(3.17)

From those veitex positions x_,y B, the cell volume ViB in phase B can be

calculated by the ecuation (3.1) _ (3.4). The cell mass is not changed in this step,

because the continuity equation.

= Md (31s)

Then the density in this step is decided by

pB , B B A 7B A'rr,4/ rBMij /Vij Mij /I 0 "_0= : _- Dijvij /
(3.19)

Therefore, the pressure can be calculated by

= R (3.20/

For isothermal process, we have Ti_ = Ti A = Ti'}-

In phase B, the momentum equations was reduced to

B , A

,MA uij -- ttijgt

4

-- -Yij P_ -P_)
o_-._1

a ( B A_In
At -- --go E p_ -- P_) _ (3.21)

a=l

In equation ([;.21) the summations are over faces of momentum cell (ij), p_ is

the pressure of th¢ regular cell in which face a lies.

The methodology described above is valid for compressible flows since equation

of state is utilize(L As for the unsteady Navier-Stokes equations, the numerical

difficulty lies in tile constraint V-V = 0. In the steady case, this difficulty can
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be surmounted by using the so-calledPseudocompressiblemethod. The method

has beenintroduced by Chorin (1967). The principle of the method is to consider

the solution of the steadyequations (2.1) asthe limit when t _ cx_ of the solution

of unsteady equations obtained by associating the unsteady momentum equation

(2.2) with a perturbed divergence equation in order to get a system of equations of

evolution which can be easily solved by standard methods.

The Chorin method is established by first writing a perturbed continuity equa-

tion

Op
0--[ + c2pv " V = 0 (3.22)

where c2 is an arbitrary constant. This equation has no physical meaning before the

steady state O/Ot = 0 is reached. So the constraint V. V = 0 is satisfied at conver-

gence only. The method, which consists of solving equation (2.2) and (3.22) can be

called a pseudo-ur.steady method because the time t involved has no physical mean-

ing. The parameter c2 in equation (3.22) must be chosen to ensure convergence,

i.e., to ensure the existence of a steady numerical solution of the system.

The term "pseudocompressible method" (Chorin 1967) can be derived from the

Navier-Stokes eqt ations for a compressible fluid whose state law would be

with c2 = constaltt. However, possible numerical difficulties can be associated with

the use of a very large value of c2, and hence the pseudocompressible method will

likely have the rr_ost value in the computation of steady solutions. In this way, it

can be considered a procedure to build a special iterative method for solving the
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steadyproblem. For incompressibleflows, the momentum equations must coupled

with the continuity equation. Continuity equation was discretizedby

(pB _ p,,) + pC2( v --1)=0 (3.23)

The equations (3.17) _'- (3.21) for compressible flow or (3.17), (3.21), (3.23)

for incompressible flow are an implicit system of equations for unknown quantities

x B, yg, u B, vg and pB. One of the major problems in machine computations is

to find an effectiw ' method of solving a system of n simultaneous linear equations,

particularly if n is large. There is, of course, no best method for all problem because

the goodness of a :nethod depends to some extent upon the particular system to be

solved.

This implicit system can be solved by a Successive Over Relaxation (SOR)

scheme. We now -)roceed to describe the SOR. Let the iteration index be u, which

will be displayed as a superscript in parentheses. SOR is specified by giving the

prescription for advancing all quantities from iteration v to iteration v + 1. The

vertex positions ere advanced first:

XI_+I) = Xiaj + UI_. ) /_t

(v+l) n (v) /_t (3.24)
Yij -- Yij _- t)ij

V ("+1) in the usual way. The pressure, (,+1) (,+1)) then determine ,jthe quantities txii , Yij "

change is compw, ed by the relaxation formula for compressible flow

(u+l) _(u) _ r (_')
Pij = t)ij -- DijlPij

Vi_ u+l)

(3.25.a)
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where
5 (v)

lPij (g/_ v't-1) - V/_)

Mit (c,)it

for incompressible' flow, the equation changed to

v+,/ t.) , (-) n vi_"+11
= -3it[(pij - pit) + Pc2( y_7P,t Pit 1)] (3.25.b)

and 3it is a rela>ation coefficient defined below. Finally, the velocity is updated

according to

, ,A (y+l) __ /_,_A A n Z(_(v+l) n n. Vlijttij -- ijtlij -- AtYij Fc_ -- p_ )l_y

---A (u+l) A A n V_(_(v+I) n n= calMitvij - p_)l_d_,lijVij -- /\tYit A__F_
c_

Since equati(,n (3.25) determines the pressure change

(3.26)

5(.) ..,_(.+1) _(.) (3.27)
Pij = Pit -- Pit

It is convenient to rewrite equation (3.26) in terms of

(.) (.+l) (.)
Uij = Uij -- tlij

5 (.) (.+1) (.)
vij = vij - vij

(3.28)

We then obtain

MA_ (v) n
ijOttij = -/\tYit E _P(_")12Y

_,¢Ac (v) n 5p(_ lo_lVlijOYij : --AtgiJ E (v) n 3.29)

Equation (3.29) is more convenient for numerical purposes than equation (3.26),

as it allows one _o avoid saving the uiA, v A.
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The iteration _s initialized by setting

. (0) A _(0) A __(0) ,_ (3.30)
uij = Uij, vii = Vii, Pij = Pij + Ap

where/hp is an esl imated change in overall pressure level (defined below), and the

final converged values are given by

, Yij, Pij, lim Ixij ,Yij ,Pij'Uij 'Vij )
V --_ O0

(3.31)

of course, the limit u -+ oo is achieved for all practical purposes at some finite

value of u; this wdue is determine by a convergence criterion and the iteration is

terminated at that point. After the iteration has converged. V/_ is known and

the densities p_ are calculated by (3.17). All quantities are updated by its relative

equations.

The relaxation coefficient/3ij for compressible flow is given by

& = w[1- nM, )]-1%,,
(3.32.a)

for incompressibh_ flow is changed to

(3.32.b)

where

Sij = (Pij -- Pij) + v,,

where Vii and Ti, are here to be considered as function of Pit; these functions are

implicitly determines by equation (3.1), (3.2), (3.23), (3.24), (3.29). The derivative

in equation (3.31) is evaluated numerically by inserting a small pressure perturba-

tion into cell (i,j) and calculating the resulting change in (Tij/V_j) for compressible
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flow or Sij for incorapressible flow. The coefficient w in equation (3.31) is the usual

overrelaxation parameter, which may be varied in the range 0 < w < 2 to accelerate

convergence. Best l esults are usually obtained with w > 1.

C. Phase C or n+l Step : Rezone Calculation

In phases A and B, the vertices were assumed to move with the fluid, based on

the Lagrangian eal(ulation. If the calculation in phase C used Lagrangian technique,

the rezone procedure is not needed. If the Eulerian technique was used, the new

mesh should be remapped into its old mesh. The vertex positions were determined

by either of the t'_o ways or by other prescribed methods. They were assumed to

move with the fluid (Lagrangian mesh)

zn? 1 = X B

:yg (3.33.a)

or they were not r:love with the fluid (Eulerian mesh)

y;-t-1 __= yB __ V/_/_t (3.33.b)

In Lagrangiaa technique, phase C is not needed. So in phase C, only the

Eulerian calculation is discussed. From equation (3.33), the volume Vi_ +1 of phase

C was calculated by equations (3.1) ,-_ (3.4), the mass was calculated by equation

(3.23) from contimfity equation.

8

c_--=l

(3.34)
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where the 6V_ is done by geometrically calculating the volume swept out by each

re_--]ar cell fa,ce ;s ;t. mo,,os _':-qm its l,a.grallgiall r, osit.ion [rtoto,-,l_inect t_v ttlo .r B. . t/

_n+l r_+l

V/_) to its final p _sltion (determined by the :,,a ' _0 ), the quantities in [p] are

chosen from the i 1/'_ located. The relationships are shown in Figure 3.5.

Let 6V_ be tile signed volume associated with the quadrilateral having swept bv

two opposing sides cell face a from phase B to phase i1+ 1. This volume is evaluated

by equations (3.1) ---(3.4) ,nd the algebraic sign of 5I"_ can be decided.

The density in n+l phase was decided by

,l+l _ r_+l -n+l% =,l,j /_ij
(3.35)

Similarly, the momentum equation was calculated bv

8

n+l..,,+'- , _,,_ iBi lt _ ._}_ _ [ t9ll l 13 _) "l}e," _"[ i j _Li j -- . c_

8

"_¢'[ i j t' i j --

ot_ l

where bl:_ is the momentum cell similar to the aI,_ for the regular cells. The c_'s in

<SV_ is the c_ fao' of the regular cell. a = 1, 2, 3, 4. The c,'s in/SV:, is the a face of

the momentum :ells. a = 1, 2.3, 4, 5, 6, 7. S.

The cell qu_ ntities [p]ff, [t)u]_, [pv]_ were determined by the donor ('ell scheme.

Let the interest,'d regular cell a be called cell 1 and the neighborin_ ceil which is

connected to th, (,ell face a be called cell 2. The cell quantities were evaluated as

an upwind-weig:tted average of the quantity of cell face 1 and cell face 2. First, the

upwind cell or conor cell should be decided by the sign of 61," : if 6V > 0. the cell 2
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is the upwind or,tonor cell which cell 1 is the downwind or acceptor cell. and vice

verse.

Therefore, tt-ose quantities was defined

QU2 if 5l/_ > 0

Qff = {Of if 61_ <0

QB1 if 61/'. > 0 (3.37)
Q_ = { Q_ if 6V_, < o

where Q = p, pu. pu, d is referred to the donor cell quantity and (i is the acceptor

cell quantity. In pl B, [pu] B, [pv] B, a partial donor cell scheme was described.

,)B= 1 B 1 B:_Od (1 + c_'o+ 3oC) + _Q. (I - oo - 3oC)
(3.38)

where a0 and 9o are adjustable coefficients. (0 <__a0 + do < 1) and

C- 216VI (3.39)

where l_q, I') is t te area of cell 1, cell 2.

In equation (3.38), when o_0 = 0 and 3o = 0, this scheme represents the cen-

tered differencin_ approximation for the convection term. which is unconditionally

unstable. If c_0 =: 1 and/30 = 0 , this scheme is the donor cell or upwind differencing

scheme. It is st:_ble, but too diffusive for most calculations. If a0 = 0 and /3o =

1, the scheme is an interpolated donor cell scheme. A weighted factor which is an

average of the c.'ntered and the donor cell differencing is added, which makes this

scheme more stz ble. This interpolation scheme is also less diffusive than the donor

cell differencing by a factor C.
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Figure 3. 5 Donor Cell used at Momentum Calculation



CHAPTER IV IMPLEMENTATION OF TURBULENCE
MODELS IN THE ALE-ICE SCHEME

The implementations of the two turbulence models described in Chapter 2 as

well as the appr,)priate boundary conditions will be described in this Chapter.

A. Subgrid Scale Eddy Viscosity

The eddy x:iscosity #t is a cell center variable and the velocity gradients in

equation (2.8) _,re evaluated for each of the two triangles into which the cell is

divided (Figure 3.1) using the triangle rule:

(OO)TR---- Y23 ¢13- Y13 023
a_ X13 Y23- X23 _/13

00 X13 023- X23 013 (4.1)
(-'_)TR --_ X13 _]23 -- "1:23 _13

where ¢ = u, v, )r w and

Cab -_ Oa -- Ob ,

Xab _--- X a -- X b

Yab:Ya -- Yb

and

a,b = 1,2,3,4

The derivatives of (OO/C3X)BL and (O¢/Oy)BL are obtained by the permutation

(TR, 1, 2, 3) _ (BL, 1, 3, 4). From those derivatives the quantities D_j of equation

37
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(2.9) was computed by

D_j = max[( D;, )?rr_, (D,j )_ ]
(4.2)

Those results were substituted to equation (2.8), and the turbulent viscosity

#t is obtained.

B. /c-e Turbulence Model

The k - e model requires solving two extra transport equations. In phase A,

tile Lagrangian fl,rmulation excluding the convection terms was imt)lemented

3,IA ka _ M n k'_ _ _ Ok _ ) Ok
o_1

G II I1 n-- CDp e

._,I A eA _ Mn en 4 _ ____..) OeAt = }2+
c_- 1

(cl,e"G n - c2_pne '_2 )/k n (4.3)

In phase C, the Donor cell scheme was used to calculated the convection terms.

C. Wall Functions

The accura_ e solution of the boundary-layer equations for turbulent flows using

models which ex aluate the turbulent viscosity at all points within the flow requires

that grid points be located within the viscous sublayer, !1+ < 4.0 for incompressible

flow, and perhaps y+ < 1.0 or 2.0 for flows in which a solution to the energy

equation is also being obtained, where y+ = yu/u. The use of equal grid spacing

for the transverse coordinate would require several thousand grid points across
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the boundary laye: for a typical calculation at moderate Reynolds numbers. This

at least r_ovides notivation for considering wavs to reduce the _-,.'.,tuber of _rid

points required to span the boundary layer, the techniques which have been used

successfully fall into three categories, use of wall functions, unequal grid spacing,

and coordinate transformations. The wall function will be disscussed in this section.

For many turbule it wall boundary layers the inner portion of the flow appears to

have a "universal' character captured by the logarithmic "law of the wall". The

inner region is a zone in which convective transport is relatively unimportment.

The law of the wall can be roughly thought of as a solution to the boundary-

layer momentum equation using Prandtl's mixing-length turbulence model when

convective and p:'essure gradient terms are unimportment. In this approach, the

law of the wall is usually assumed to be valid in the range 30 < g+ < 200 and the

first computational point away from wall is located in this interval. The law of the

wall equation wa_ given by the logarithm form

u lln( yu---_-*) + B (4.4)

where u is the tangential component of the fluid velocity at a perpendicular distance

g from the wall, :_ is the molecular kinematic viscosity, _; is von karman constant(in

this study, the _: is set to 0.4 ), B is a constant that depends on wall roughness (we

set B = 5.5 (sm,_oth-wall)), and u. is the shear speed, which is related to the wall

shear stress r,, and the fluid density p by rw = pu 2.

In this equation, the u. of equation (4.4) appears in both sides of the equation,

which one woult ordinarily have to solve iteratively. To avoid the inconvenience
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this would entail weuse instead an approximation obtained by replacing u. in the

argument of the logarithm by 1/7-law value u.. The 1/7-1aw's equation (Hinze

1975) is given by

= s.3( _,_A)1/7 (4.5)
II . t/

multiplied yu,/(tg.3v) to both sides of equation (4.5) and took power 7/8, then the

equation change to below

yu, _ 0.15(Yu)7/s (4.6)

substitute (4.6) into the right side of equation (4.4), the new equation was obtained

t---_= 0.75 + 2.19 ln(y___u) (4.7)
lL, //'

From this e, tuation, it can be explicitly solved for u.. The wall stress is then

given by rw = t_u_. If yu/u (a Reynold's number based on y ) is too small, the

interested point lies in the laminar sublaver rather than the law-of-wall region. In

this case, the laminar sublayer equation was given

tt --._ (_JU)I/2 (4.8)
It. V

The transition values between equation (4.7) and equation (4.8) is made at the

point where they predicted the same u,, which is yu/v = 130.3.

These equaqon are implemented numerically in the following way. Consider a

typical cell adjacent to the wall, as shown in Figure 4.1. The shear stress r,. for

this cell is evaluated by setting

1

= 5[(uL +_R): + (vL+ vR): + (mL+ _R):] _
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1 (4.9)
=  (hL + hR)

and v = P L/P, wh_re p is the density in the cell in questi<:n, and PL is evaluated _t.

the temperature o!" the cell. Equation (4.7) and (4.8) incorporate two simplifying

assumptions: (1) lhe normal velocity at points L and R is negligible, so that the

tangential component may be replaced by the magnitude of the velocity, and (2) the

lines connecting points L and R to their neighbors on the wall are approximately

perpendicular to the wall. These values for u, y, and _, determine u. and hence 7,,

as already described.

With r,,, thu: determined, the product v,,AAt gives the associated change in

fluid momentum (<curring on a time step (A is the wall area of the cell in question).

Half of this change is apportioned to vertex L and the other half to vertex R. These

changes are effect,'d by multiplying all velocity components at each of these vertices

by a single factor ior that vertex, so that the directions of the velocity vectors do not

change. (This pr(,cedure again relies on assumption (1) of the previous paragraph.)

These factors are given by

I r_AAt
FL = 1 -- -

2 ML(4 + +

1 r_AAt (4.10)
FR = 1 - -

where I_IL and 2 IR are the vertex masses. If either of these factors comes out less

than 0.3, It is re')laced by 0.3 to prevent the velocities from changing by too large a

factor on a singl,_ time step. It should be noted that these changes to the velocities

at points L and R are only those due to the particular cell in question. A similar
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change to the velocity at L will result from the wall cell to the left, and to the

velocity at R from the wall cell on the right.

The wall fur ction set for k is

2

k- (4.11)

and for e is

u 3
e -- * (4.12)

my

and the turbulent viscosity #t was calculated by equation (2.11).

D. Initial Conditions

At the inle,: of the calculation domain, all dependent variables have to be

specified. The k profile may be estimated from the measurements. In general, k is

specified as a percentage of the inlet mean square velocity.

(4.13)kin = 0.003 x uin

The inlet p:'ofile for e has to be assumed, since no measurements are available.

It is specified as

.3/2/(0.03D/2) (4.14)6in _ C uKin

where D is characteristic length at the inlet and c i, = 0.09.

From this two initial values, the turbulent viscosity #t can be calculated by the

equation ( 2.11 ).
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CHAPTER V RESULTS AND DISCUSSION

For the purp)se of code validation and testing, several benchmark problems

with available analytical and experimental data have been chosen. The first case is

the Burger's equation with complex geometries and boundaries. Next. the laminar

and turbulent pipe flows are calculated. Finally, a confined coaxial jet flow relevant

to combustor desgn is calculated.

i.
Solution Of Burger's Equation With

Complex Geometries And Boundaries

The purpose of this problem is to test the capability of the ALE-ICE scheme for

handling comple_ geometries and boundaries. The Burger's equation with mixed

Neumann and Dirchlet boundaries are chosen to test the ALE-ICE scheme.

The Burger s equations for the unsteady incompressible flow may be written

as

Ou Ou Ou O:u 02u.
0-7+ + vN = + ) +

Ov Ov Ov 02v 02t'
-_ + u--_x + V-_y = v(-_x + --_y ) + Iy

(5.1)

where

1 t (x2 + 2xy 1f_- 1+ l+t
) + 3xZy 2 - 2vy

1 1 3

A - 1 + t (y_ + 2_v - _) + 3z _v
-- 2vx

44
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with the Neumann boundary conditions and the Dirchlet boundary conditions spee-

• j.eul7] .....ified according to Figure 5.1. The N -_,- boundary con d;tious a,-o soecified:

0lt

-- = 2xy
Ox

(Otl x2

Oy

Ov = y2
Ox

OV
-- = 2xy (5.2)
Oy

The solutioz will be compared with the exact solution

1
tL - + x2y

l+t

1 (5.3)v - + xy 2
l+t

First, grid independence studies were carried out by using three grids • 4 x

10, 8 x 20 and 16 x 40. The case considered was u = 1 and times step was set rather

small to reduce any instability. The total r.m.s, errors, which was defined as sum

of the pointwise r.m.s, error

(5.4)

were plotted vs time on Figure 5.2. Both 8 x 20 and 16 x 40 reaches asymp-

totic values of 7%, and since only the long- time behaviors are compared the rest

of the results a-'e shown using the 8 x 20 grid. Effect of viscosity on the calcu-

lated results is shown on Figure 5.3. As expected, as Reynolds number increases

(u decreases), convection term dominates and due to the upwind scheme for the
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convection term approximation, the total r.m.s, errors increases.Typical results in

terms of polntwise errors are shown in Figure 5.4 and Table 5.1. Fn_areas closed

to non-orthogonal grids and Neumann's B.C._s,there appear to have lessaccurate

results (Lee et al. 1989). This points to the further development in terms of flux

calculations in the ALE-ICE method for irregular grids and Neumann Boundary

condition implementations.

gm
Laminar Pipe Flow

The second l esting case is a laminar pipe flow. The pseudocompressibility

method described in Chapter 3 was used for the incompressible flow case. This

method has also l_een used in Rogers et al. (1987), Liang et al. (1985) and Nichols

et al. (1980) for incompressible flows.

The analytical solutions of laminar pipe flows were given in Bird et al. (1960).

The calculated r_sults will be compared with the analytical solution. The velocity

distribution in t[e fully developed region was given by

u. = 2 ub [1-(R) 2]
(5.5)

where U, is the iongitudinal velocity, Ub is the bulk velocity and R is the radius of

the pipe.

The Reynolds number (Re = DUb/u) of 1,000 was carried out for laminar flows

in which D is tI=e pipe diameter and u is the viscosity. In Figure 5.5, 5.6 different

3 values (pc '2) were tried to find the optimal performance. For 3 around 5 the

solutions obtained were optimal. Next, grid independence studies were carried out

by using 11 x 811 21 x 81 and 31 x 81 grids. In Figure 5.7, 5.8 fully developed
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and developing pr,)files show that 21 x 81 and 31 x 81 grids converged to the same

solutions ,__d compare well with the analytical solution velocity within about .8 %

errors. The calcul,_tion was clone by assuming the plug profile at the pipe inlet and

the calculation dcmain was 60 in pipe diameter. Fully developed (Figure 5.9) and

developing (Figur'_ 5.10) data compared to analytical solution velocity is only .75 %

errors in 21 x 81 ,-ase. In this section, each case runs about 17,000 cycles and each

cycle uses .7 second on CRAY-XMP. This simulation will give some suggestion to

the ALE-ICE scheme's future works and will help the next test case for turbulent

flOWS.

CB Turbulent Pipe Flow

Most turbulence models have been tested and/or developed using fully devel-

oped pipe flow c:mditions, and this testing will be made in this study..-ks recom-

mended by Marlinuzzi and Pollard (1989), the calculated results are compared to

one another, an_t, for the sake of placing the calculations in perspective, they are

compared to vaiious data sets that appear in the literature. A single data set has

not been used because, in the authors' opinion, a reliable, well-documented data

set does not exist due to back of providing detailed inlet conditions. As a results,

the data sets o" Richman and Azad (1973), Lawn (1971) and Nikuradse 1932)

will be compared with the calculation results. From Martinuzzi and Pollard 1989)

recommendatiolt, the Re =10,000 and Re =100,000 will be used in this study.

Calculatioi_. grids 21 x 81, 31 x 81 for Re =10,000 and 51 x 81.61 x 81 and 71 x

81 for Re =100 000 were used by grid independence study. The plug flow condition
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was used at thei:flet. The .3 value for 21x 81 and 31 x 81 was 500 and for 51 x

81, 61 x 81 and Vl x 81 grids was 5 000. The calculation domain was 80 in the

pipe diameter. Elnpirical relationships are used to assign entrance values to k and

e; that is, ]_ = 0.)03 U_ for Re =10,000, k = 0.03 U_ for Re = 100,000 and e =

(C_k_/O.O3/R).

In Figure 5.11, the fully developing axial velocity profiles normalized by the in-

let velocity, at Re =10,000, was presented. Figure 5.12, the fully developed velocity

profiles are coml:ared with those data of Nikuradse. The fully developed profiles

at Re =10,000 for u + = u/u. vs y+ is shown in Figure 5.13, the slopes are gener-

ally well reprodu,:ed, but the absolute values of the calculations tend to overpredict

the data of Nikvradse (1932). The developing velocity profiles for Rc =100,000

are shown in Figure 5.14 with the data of Richman and Azad (1973). The differ-

ences are negligible. The fully developed axial velocity profiles at Figure 5.15, at

Rc =100,000, aIe compared with those data of Richman and Azad (1973). The

agreement between experimental data and calculations is poorer close to the wall

boundary. This _an be further seen from Figure 5.16 where the mean velocity profile

is plotted using ':he wall coordinate. Using the 1/7-th law wall function forced the

first grid calculation results to match the logarithm wall. Due to the poor turbu-

lence model cap_tbility for strong shear flows, the predictions deviate significantly

away from the x_all.

The distrib'ltion of the turbulence kinetic energy in the fully developed region

for Reynolds nu:nber of 10,000 is overpredicted (Figure 5.17) and is underpredicted

(Figure 5.18) fo_" Re =100,000 as compared to Lawn's experimented data.



49

It should be noted that the 1/7-th law wall function used in there calculations

i_ o.,,lv valid for f_fllv developedturbulent pipe flows. This a_c,urnpt_on is incapaMe

of modeling dew'loping regionsand separatedregions as will be seen in the next

test case. The useof the 1/7-th law wall function is probably responsible for the

poor performanc,_of the k - e model toward the wall regions as implemented in this

study.

Do The Coaxial Jet Flow

The Space Shuttle Main Engine (SSME) high pressure fuel preburner consists

of 264 coaxial injector elements injecting gaseous hydrogen and liquid oxygen into

a large cylindric_fl chamber. The ARICC code was originally developed to simulate

these types of flowfield. The outer wall is a free-slip boundary that corresponds

to the imaginary symmetry surfaces of a streamtube whose diameter is determined

based on the av,_rage cross-sectional area available to each injector element (Liang

et al. 1986a). This ability is deemed necessary for the simulation of the confined

coaxial jet flow,,. Owen's turbulent recirculating jet flows (1976) will be tested in

this study.

Owen's turbulent recirculating jet flows (1976) is a complex one consisting of

large recirculating zones. It is a confined coaxial jet flow with high velocity ratio

between annular jet and central jet, and a central toroidal recirculation zone is

formed due to t:le imbalance of the mass flow between the central and annular jets.

The sudden ex t,ansion of annular jet results in a severe adverse pressure gradient.

When this pressure gradient is too strong for the low momentum central jet, a
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central toroidal r,,circulation zone results in addition to the corner recirculation

ZOP.e.

In an effort 'o provide such data and also to understand the nature of the

flow in a coaxial jet flow configuration of interest to combustor designers, Owen

carried out detail(d turbulence measurements using LDA. The Owen's experimental

configuration (ret,roduced in Figure 5.19) consist of a 2.5 in (6.35 cm) central jet

surrounded by a 3.5 in (8.89 cm) annular jet. The jets discharge into a 5 in (12.7

cm) diameter chamber 48 in (121.9 cm) long. The outer and inner peak velocities

were 96.0 (29.261 and 8.0 (2.44) fps (m/see) corresponding to Reynolds numbers

based on respective jet diameters of 1.5 and 0.08 x

reported.

105 . Inflow profiles were not

Sturgess, et al. (1983), Syed and Sturgess (1980), Novick. et al. (1979) pre-

dicted the confin,_d coaxial jet flow corresponding to the experimental conditions of

Owen's (1976) w;th k- e turbulence model. None of these predictions produced the

shape, size, and location of the important central toroidal recirculation zone cor-

rectly (Nallasam:_ 1987). The length of the central recirculating zone was severely

underpredicted l:,y about 40 percent. As concluded by Nallasamy (1987), the corner

and central recirculation zones are very sensitive to the central jet exit geometry.

Computations for this case were made using ARICC code with 21 x 81 and 31

x 81 unstructured grids, shown in Figure 5.20. The calculation domain was 12 times

of the diameter (,f the chamber and extended 4 inches for inlet flow. The inner jet is

2.5 inches, the cuter jet is 3.5 inches and the chamber is 5.0 inches. The Reynolds

number for inn(_r jet is 8000 and for outer jet is 15,000; Re = DUb�u, where D
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is the jet correspondencediameter and Ub is the bulk velocity for correspondence

iets. u is the kii_._mati," vi_cc_ity. The inlet value_ for /c is 0.003x{7_ and for e is

C,k a/0.03/R. C)mputations were made with the subgrid and the k - e model.

Figure 5.21 ,,hows the comparisons of the centerline mean axial velocity profiles

and the measured values. The k - e model prediction is good up to 2.0 D and the

subgrid model only within 0.5 D. Beyond those the predicted value are smaller than

the measured or_e. The mean velocity profiles predicted by the k - e model and

subgrid model c_ mpared to the measured values are illustrated in Figure 5.22, 5.23.

The predicted mean velocity profiles of k - e model are in good agreement with the

data, but subgri,[ model are not. Between x/D=0.25 and x/D=1.8, some differences

between the dater and the predictions are seen. However, the overall predictions of

k - e model are in good agreement with data in the recirculation zone. The k - e

model predictions for r.m.s, velocity fluctuation and the data are shown in Figure

5.24. The prediction is very close to the data. Figure 5.25 shows the streamline

patterns, subgri,t model center recirculating zone is larger than that of k - e model's.

The k - e model shows a better representation of the experimental data. For corner

recirculating zo,ues, k - e model also shows good predictions

Figure 5.2_ shows the transient behavior of ARICC code. As seen from those

profiles, they ale not real transient results. Equation 3.22 indicated that the con-

tinuity equation can only be satisfied steady state was reached From this point of

view, the transient results are not time-accurate and only represent intermediate

transient to th( final steady state results.
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Table 5. 1 Values for Figure 5.4

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

predict

u

1.96

1.59

1. 108

I. 34

6.96

9.93

1.22

1.39

1.32

2.71

13.15

17.90

1!

1.96

1.58

1 •083

1.33

7.58

10.80

6.23 17.09 6.69

2.92 12.27 3.08

1.86 10.66 1.96

25.545.75 5.83

exact

v

1.21

1.39

1.33

2.83

14.33

19.30

error

u

m

4.9E-5

1.12E-4

1.85 E-4

6.4E-3

rms

v

9.18E-5

2.73E-5

9.06E-5

I. 06E-2

18.40 3.4E-3 9.9E-3

12.80 1.24E-3 4.24E-3

10.95 7.61E-4

25.833 6.2E-4

2.28E-3

2.18E-3

ol
O_
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CHAPTER VI CONCLUSION

In this study, the ALE-ICE scheme has been applied to four different case, the

Burger's equations were solved on a complex geometries with different boundary

conditions. Fully bavier-Stokes equations were solved in other cases. The pseudo-

compressibility me t,hod was used to solve incompressible fluid flow problems. Both

laminar and turbment pipe flows were tested and compared with the analytical so-

lution (Bird et ah 1960) and experimental data and other predictions (Martinuzzi

et al. 1989). Last:y, a confined coaxial jets flow with larger momentum difference

between inner jet and annular jet were calculated. Owen's experimental data was

chosen for compalison.

Results obtained from solutions of the Burger's equation by unstructured grid

showed that the total r.m.s, errors, defined by equation (5.4), reached asymptotic

values of 7%. Effects of viscosity on the calculated results were studied. As ex-

pected, as Reyno ds numbers increase (u decrease), convection term dominates and

the total r.m.s, errors increase. For areas closed to non-orthogonal grids and Neu-

mann B.C., ther.', appear to have less accurate results. This points to the further

development in :erms of flux calculations in the ALE-ICE method for irregular

grids and Neumann Boundary condition implementations. Results from laminar

pipe flow showe_l good agreement with the analytical solution (Bird et al. 1960).
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From turbulent pipe flows results, the calculations using the k - e model showed

¢ood predictions except the ne,_ wall rezion, the discrer_ancies were traced to the

usage of the 1/7th law wall function in which the fully developed assumptions were

used. For the confined coaxial jet case, the subgrid model can not matched Owen's

experimental data 1976). on the other hand, the k - e model gave the closer pre-

dictions compared to the experimental data. For these tests, the adiabatic sound

speed factor, /3 = oc 2, for the pseudocompressible continuity equation can not be

obtained easily. T!le number of _ suggested by Nichols et al. (1980), Anderson et

al. (1984), Sob (1087) and Rogers (1987) could not be used in ARICC clue to the

different numerical method. Liang (1985) suggested that _ could be any suitably

large number to c, mvert the small volume changes into appropriately large pressure

changes. Howe ve1`, the B's being used in laminar pipe flows were found to be dif-

ferent from those of the turbulent pipe flows. Also, the 3 value used in the subgrid

model calculatioI s was different with those used in the k - e model calculations.

It is concluded that there is no specific 3 that can be used in any cases. Trial

and error has to be executed for each different cases. From this point of view, the

pseudocompressibility method is more difficult for general fluid flow simulations.

From the re_ults of confined coaxial jet calculations (Figure 5.27), the transient

behaviors of the pseudocompressibility method in the ARICC code were not time-

accurate. Those profiles look like a temporary acoustic waves pushing through the

calculation domain. It is similar to the compressible flows calculations. Therefore,

the ARICC cocLe is not capable of time-accurate predictions of the liquid jet in

two-phase confined coaxial jet simulations. In this regard, a subiteration scheme
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can be incorporated in pseudotime to satisfy the continuity equation at eachtime

step asdone recently bv Rogers._ndKwak (19.00).

From the casestested in this study, it is also concluded that the ARICC code

using the pointwise SOR solver is not efficient for fine grid calculations. A more ef-

ficient solver sucha:_the conjugate gradient method should be implemented for the

future usage. As foJ the turbulence models, the moreelaborated k - e model gener-

ally gave more satisfactory predictions in the cases tested compared to the subgrid

model. The implementation of the 1/Tth law wall function for the near wall velocity

profiles was found to be inaccurate for developing flows. Further improvements on

the near wall treat_nents of turbulence models are definitely needed.
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